
\qquad
\qquad

Unified Mass Unit

\qquad

- In nuclear physics it is convenient to use a \qquad unit of mass smaller than a kg
- Unified mass unit, u
- Defined as $1 / 12$ of the mass of a carbon- 12 atom \qquad

$$
u=1.661 \times 10^{-27} \mathrm{~kg}
$$

Mass Defect \& Binding Energy

- Let's calculate the mass of a helium atom \qquad ${ }_{2}^{4} \mathrm{He}$
$2 p: \quad 2(1.007276 u)=2.014552 u$ \qquad
$2 n: 2(1.008665 u)=2.01733 u$
$2 e: 2(0.000549 u)=0.001098 u$
Total mass $=4.03298 u$
- But, the mass of a helium atom is 4.002602 u
- This results in a difference of $0.030378 u$
- This difference is called the mass defect

Where did the extra mass go?

- The answer is given by Einstein's mass- \qquad energy equivalence relationship

$$
E=m c^{2}
$$

- The mass defect has been converted into energy and is stored in the nucleus
- This energy is called the binding energy of the nucleus, E_{b}
- So, how much energy is it?

$$
\begin{aligned}
& E=m c^{2} \\
& E=(1 \mathrm{u})\left(2.9979 \times 10^{8} \mathrm{~ms}^{-1}\right)^{2} \\
& E=\left(1.661 \times 10^{-27} \mathrm{~kg}\right)\left(2.9979 \times 10^{8} \mathrm{~ms}^{-1}\right)^{2} \\
& E=1.4928 \times 10^{-10} \mathrm{~J}
\end{aligned}
$$

- Converting to electron volts gives us

$$
E=9.315 \times 10^{8} \mathrm{eV}=931.5 \mathrm{MeV}
$$

- Therefore $u=931.5 \mathrm{MeV}$
- For our helium atom, the binding energy is then

$$
(0.03038 u)(931.5 \mathrm{MeV})=28.30 \mathrm{MeV}
$$

- Most nuclei have a binding energy of approximately 8 MeV per nucleon

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
- The binding energy curve shows a \qquad maximum at $A=62$ (nickel)
- When a nucleus decays it releases the \qquad binding energy as kinetic energy of the decay particles \qquad
- For this to happen, the mass of the nucleus must be less than the mass of the decay particles
- This is true for all particles heavier than nickel ($A=62$)

Forces within the Nucleus

- Protons are positively charged and therefore the nucleus should blow apart due to the electromagnetic force between them
- However, atoms are stable (another force must be present)
- The strong nuclear force
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

The Strong Nuclear Force

\qquad

- An attractive force much stronger than the \qquad electromagnetic force if the separation between the particles is very small $\left(10^{-15} \mathrm{~m}\right.$ or less)

Weak Nuclear Force

- A weaker force that exists within the nucleus that shows itself in certain types of radioactive decay

